

Copyright ©2023 by the Magnetics Society of Japan. This article is licensed under the Creative Commons Attribution International License (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/

T. Magn. Soc. Jpn. (Special Issues)., 8, 84-89 (2024)

INDEX

Bi, Ga 置換 Eu ガーネットの室温における磁化及び角運動量補償組成

Magnetization and angular momentum compensation composition of Bi, Ga substituted Eu garnets at room temperature

朝野 航^{a)}·Md Abdullah Al Masud^{a)}·西 敬生^{b)}·大島 大輝^{c)}·加藤 剛志^{c)}·李 基鎮^{d)}·

河原 正美 ^{e)}・Fatima Zahra Chafi ^{a)}・西川 雅美 ^{a)}・石橋 隆幸 ^{a)†}

a) 長岡技術科学大学,新潟県長岡市上富岡町 1603-1 (〒940-2188)

^{b)}神戸市立工業高等専門学校,兵庫県神戸市西区学園東町8丁目3(〒651-2102)

^{c)}名古屋大学, 愛知県名古屋市千種区不老町(〒464-8603)

^{d)}西江大学校, ソウル特別市麻浦区ペクポム路 35 (〒04107)

^{e)}株式会社高純度化学研究所,埼玉県坂戸市千代田5丁目1-28(〒350-0214)

W. Asano^{a)}, M. A. A. Masud^{a)}, T. Nishi^{b)}, D. Oshima^{c)}, T. Kato^{c)}, K. Lee^{d)},

M. Kawahara ^{e)}, F. Z. Chafi ^{a)}, M. Nishikawa ^{a)}, T. Ishibashi ^{a) †}
^{a)} Nagaoka Univ. Tech., 1603-1 Kamitomioka-machi, Nagaoka-shi, Niigata 940-2188, Japan
^{b)} Kobe City College Tech., 8-3 Gakuenhigashi-machi, Nishi-ku, Kobe-shi, Hyogo 651-2102, Japan
^{c)} Nagoya Univ., Nagoya-shi, Aichi 464-8603, Japan
^{d)} Sogang Univ., 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
^{e)} Kojundo Chem., 5-1-28 Chiyoda, Sakado-shi, Saitama, 350-0214, Japan

It is expected that ferromagnetic resonance frequency increased at compensation point for an angular momentum. In this study, $EuBi_2Fe_{5-x}Ga_xO_{12}$ thin films prepared by metal-organic decomposition method were characterized by magneto-optical measurements and ferromagnetic resonance measurements. Compensation points for magnetization and an angular momentum were found at Ga compositions of 1 - 1.1 and 0.9 - 1, respectively. Gyromagnetic ratio was increased at Ga compositions of 1.

Keywords: Metal-organic decomposition method, Bi-substituted rare earth iron garnet, Gyromagnetic ratio, Angular momentum compensation composition, Ferromagnetic resonance, High frequency property

1. **序論**

Bi 置換希土類鉄ガーネット(R₃×Bi_xFe₅O₁₂)は, 可視から 近赤外領域で優れた磁気光学(MO)特性を示すこと¹⁾⁻³⁾か ら, 光アイソレータや磁気光学イメージングに用いられて いる. さらに, 磁気光学イメージングでは, 高周波プロー ブでは検出の困難な数 GHz 以上の近傍磁場の計測が期待 されている. これまでに我々は, 高周波領域における磁場 を可視化する MO イメージング技術の開発に取り組み, Ndo.5Bi_{2.5}Fe₅O₁₂薄膜を用いて, マイクロストリップライン から生じる近傍磁場を 6 GHz の周波数まで可視化するこ とに成功している⁴⁾. しかし, さらに高い周波数の測定を 高感度に行うためには, 高周波特性の改善が必要である. そのためには, 強磁性共鳴の周波数を向上させる必要があ る. フェリ磁性体においては, 角運動が消失する角運動量 補償組成付近で, 強磁性共鳴周波数が大きく増大すること が知られている^{5), 6)}. そこで我々は, 角運動量が補償点付 近の Bi 置換希土類鉄ガーネットを作製することを目的として研究を行ってきた.

Bi 置換希土類鉄ガーネットは、鉄イオンを含む四面体、 八面体サイトと、希土類イオンを含む十二面体からなる. 3つの四面体サイトと2つの八面体サイトに反平行の磁気 モーメントを持つ Fe³⁺が存在するため,フェリ磁性を示す. これらの Fe³⁺を Al³⁺や Ga³⁺のような非磁性イオンで置換 することで飽和磁化を制御することができる.また,選択 する希土類イオンの種類によって,磁気モーメントの方向 や大きさが異なる. そのため, 非磁性イオンおよび希土類 イオンの量を適切に選ぶことによって、角運動量補償組成 を得ることができると考えられる. ただし、希土類イオン の種類によって磁性ガーネットの磁歪定数が大きく異なる ため、得ようとする磁気異方性も考慮しながら組成を選択 する必要がある. これまでに, Y, Nd, Eu, Sm, Pr などの希 土類イオンを含む Bi 置換希土類鉄ガーネットについて磁 気異方性を調べた結果⁴⁾から、EuBi₂Fe_{5-x}Ga_xO₁₂は、磁気 イメージングに適した面内磁気異方性を有し、角運動量補 償組成が得られると期待できることがわかった.本論文で は、EuBi₂Fe_{5-x}Ga_xO₁₂ (x=0, 0.5, 0.9, 1, 1.1, 1.2, 1.3, 1.4,

Corresponding author: T. Ishibashi

⁽e-mail: t_bashi@mst.nagaokaut.ac.jp)

1.5, 2)薄膜を作製し, 強磁性共鳴(FMR)測定による評価を 行った結果について報告する.

2. 磁性ガーネットの高周波特性について

MO イメージング技術の高周波特性を改善するために は、まず、大きな磁気回転比γが必要である.次式は、強磁 性体の磁化の時間応答を示す LLG 方程式である⁵⁾.

$$\frac{d\mathbf{M}}{dt} = -\gamma [\mathbf{M} \times \mathbf{H}] + \frac{\alpha}{M_s} \left[\mathbf{M} \times \frac{d\mathbf{M}}{dt} \right]$$
(1)

ここで、**M** は磁化ベクトル、**H** は磁場、 γ は磁気回転比、 α はダンピング定数である.第1項が歳差運動項、第2項 が減衰項である.歳差運動項に含まれる係数 γ は共鳴周波 数と比例関係にあり、これを制御することが重要である.

フェリ磁性の磁性ガーネットの場合,有効磁気回転比 γ_{eff} は,希土類の磁気回転比 γ_{R} ,希土類の磁気モーメント M_{R} ,鉄の磁気回転比 γ_{Fe} ,四面体および八面体サイトの Fe^{3+} の磁気モーメント $M_{Fe}(te.), M_{Fe}(oc.)$ を用いて次のように表される 6 .

$$\gamma_{\rm eff} = \frac{M}{S} = \frac{M_{\rm R} + (M_{\rm Fe}(te.) - M_{\rm Fe}(oc.))}{\frac{M_{\rm R}}{|\gamma_{\rm R}|} + \frac{(M_{\rm Fe}(te.) - M_{\rm Fe}(oc.))}{|\gamma_{\rm Fe}|}} = g_{\rm eff} \frac{e}{2mc} \quad (2)$$

ここで, Mは正味の磁化, Sは正味の角運動量である.大きな磁気回転比を得るためには,上式より,正味の角運動量 量 Sを小さくすればよいことがわかる.すなわち角運動量 補償組成付近で大きな磁気回転比が得られると考えられ る.一方で,磁気光学イメージングに用いるためには,面 内磁気異方性,すなわち負の有効磁気異方性を兼ね備える 必要がある.有効磁気異方性 Keff は次のような式で表すこ とができる⁷.

$$K_{\rm eff} = K_1 + K_{\rm u} - 2\pi M_{\rm s}^{\ 2} \tag{3}$$

ここで, K₁は結晶磁気異方性定数, K₄は一軸誘導磁気異方 性定数, 2πM₅²は形状磁気異方性定数である.このうち, 一 軸誘導磁気異方性は選択した希土類サイトの元素の種類に 依存する.また,形状磁気異方性は飽和磁化 M₆を変える, すなわち四面体サイトに非磁性イオンを置換することによ って制御することができる.ただし,形状磁気異方性につ いては,角運動量補償組成付近では M₆が小さくなり,磁気 異方性への寄与は小さくなる.一軸誘導磁気異方性につい ては,ガーネットの磁歪定数が希土類の種類によって符号 も大きさも大きく異なることを利用して制御できると考え られる.一軸誘導磁気異方性定数と磁歪定数の関係は,次 式で与えられる⁸.

$$K_u = -\frac{3}{2}\lambda\sigma \tag{4}$$

ここで, λは磁歪定数, σは引っ張り応力である.また有機 金属分解(MOD)法で作製した Bi 置換希土類鉄ガーネット は,基板との熱膨張係数の違いから,面内引っ張り応力が 生じる⁹. 例えば, Ce, Sm, Eu を用いた磁性ガーネットは, 比較的大きな正の磁歪定数を有するため,面内引っ張り応 力が面内磁気異方性に寄与することが期待される.

3. 実験

3.1 EuBi₂Fe_{5-x}Ga_xO₁₂薄膜の作製

EuBi₂Fe_{5-x}Ga_xO₁₂ (x=0, 0.5, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 2)薄膜は、MOD 溶液(BiFeEu(2/5/1), BiFeEuGa(2/3/1/2), 高純度化学研究所)を用いて各 Ga 置換量になるように調製した溶液を Gd₃Ga₅O₁₂ (GGG) (100)基板上に滴下,スピン コーターで 3000 rpm, 30 秒の条件で塗布した.その後, 100°C のホットプレートで 10 分間板焼成を行った.この操作を 5 回繰り返した後、770°C のマッフル炉で 3 時間本焼成を行った.

3.2 EuBi₂Fe_{5-x}Ga_xO₁₂薄膜の評価

作製したガーネット薄膜の評価は、XRD 測定,磁気光学 測定および FMR 測定により評価を行った.XRD 測定は, X 線回折装置(Smart Lab 3kW (Rigaku))を使用し,線源は Cu,測定範囲は 2θ =20-80°とした.磁気光学測定は,ス トークスパラメータ法^{10,11}を用いて,マルチチャンネル分 光器(USB2000+VIS-NIR)を使用し,波長範囲は 450-950 nm とした.ここで,磁場は面直方向に印加された.FMR 測定は,電子スピン共鳴分光装置(JEOL JES-RE2X)を使用 し,マイクロ波周波数 9.09 GHz,掃引磁場範囲 0-10 kOe, 変調磁場 0.5 Oe,電力 5 mW,磁場印加角度 β = 0-180° (面直方向を 0°)として行った.

3.3 FMR 測定による磁気異方性および高周波特性の評価

作製した薄膜の磁気異方性および磁気回転比 γ を,共鳴 磁場 H_{res} の磁場方向依存性の測定から求めた 7,12 .この手 法により,結晶磁気異方性定数 K_1 ,一軸誘導磁気異方性定 数 K_u および磁気回転比 γ の値を同時に調べることができ る.

(100)配向の試料において, FMR 測定の実験と解析に用 いた座標系の模式図を Fig. 1 に示す. $\theta \ge \phi$ はそれぞれ磁 化の極角と方位角である. β は外部直流磁場 Hの極角であ る. このとき FMR が生じる条件は次式で与えられる η , 1³).

$$\left(\frac{\omega}{\gamma}\right)^2 = \frac{1}{M_s^2 \sin^2 \theta} \left[\frac{\partial^2 E}{\partial \theta^2} \frac{\partial^2 E}{\partial \phi^2} - \frac{\partial^2 E}{\partial \theta \partial \phi} \right]$$
(5)

ここで, ω は入射マイクロ波の角周波数, M_sは試料の飽和 磁化である.

単位体積当たりの磁化の総エネルギーEは、ゼーマンエ ネルギー、一軸誘導磁気異方性エネルギー、結晶磁気異方 性エネルギー、形状磁気異方性エネルギーの和として次の

Fig. 1 A schematic illustration of coordinate system used in the experiments and analysis of FMR.

ように表される 7).

 $E = -HM_{s}(\sin\theta\cos\phi\sin\beta + \cos\theta\cos\beta) + K_{u}\sin^{2}\theta$ $+ \frac{K_{1}}{4}(\sin^{4}\theta\sin^{2}2\phi + \sin^{2}2\theta) + 2\pi M_{s}^{2}\cos^{2}\theta$ (6)

+ $\frac{1}{4}$ (sin^{*} θ sin² 2θ + sin² 2θ) + $2\pi M_s^2 \cos^2 \theta$ (6) ここで、平衡状態で $\theta \geq \phi$ は、 $\partial E/\partial \theta = 0$ および $\partial E/\partial \phi = 0$ を満たす.これを代入することで、共鳴条件式が次のよう に求められる.

 $\begin{pmatrix} \frac{\omega}{\gamma} \end{pmatrix}^2 = \left[H\cos(\beta - \theta) + 2 \left(\frac{K_u}{M_s} - 2\pi M_s \right) \cos 2\theta + \frac{2K_1}{M_s} \cos 4\theta \right] \times \\ \left[H\cos(\beta - \theta) + 2 \left(\frac{K_u}{M_s} - 2\pi M_s \right) \cos^2 \theta + \frac{K_1}{2M_s} (3 + \cos 4\theta) \right] \quad (7) \\ \text{ここで, } H \mathrel{``} H \mathrel{''}_{\text{Hres}} \mathrel{''} \sigma \delta . \quad \beta \mathrel{``} \delta \mathrel{''} \delta \mathrel''} \delta \mathrel''} \delta \mathrel{''} \delta \mathrel{''} \delta \mathrel''} \delta$

4. 結果および考察

4.1 XRD 測定結果

作製した薄膜の XRD パターンを Fig. 2 に示す.全ての 薄膜はいずれも GGG 基板の回折ピークの低角側にガーネ ット薄膜の回折ピークを確認できたことから,(100)配向し た薄膜が得られていることがわかる.また,ピーク位置か ら求めた格子定数と最小二乗法よるフィッティング結果を Fig. 3 に示す.Ga 置換量が増加するとともに僅かであるが 格子定数が小さくなる傾向が見られた.ここで,四面体サ イトの Fe³⁺および Ga³⁺のイオン半径が 0.049 nm, 0.047 nm¹⁴⁾ であることから,Ga³⁺が Fe³⁺の四面体サイトに優先 的に置換されることで格子定数がわずかに小さくなったと 考えられる.

4.2 磁気光学測定結果

作製した試料のファラデー回転角測定結果を Fig. 4 に示 す. 全ての薄膜において, 520 nm 付近にピークを有する典 型的な高濃度 Bi 置換希土類鉄ガーネットのファラデー回 転スペクトルが得られた¹⁵⁾. また, Fig. 5 に 520 nm にお けるファラデー回転角と Ga 置換量の関係を示す. 図中の 点線は, Bi 置換磁性ガーネットファラデー回転スペクトル

Fig. 2 XRD patterns of $EuBi_2Fe_{5-x}Ga_xO_{12}$ thin films prepared on GGG (100) substrates.

Fig. 3 Calculated value by the least-squares method and experimental data of EuBi₂Fe₅-_xGa_xO₁₂ thin films prepared on GGG (100) substrates.

Fig. 4 Faraday spectra of EuBi₂Fe_{5-x}Ga_xO₁₂ thin films prepared on GGG (100) substrates.

が次式, $\frac{\theta_{\rm F}(\omega)}{e^{2}\pi mc} = \frac{\pi e^{2}\omega^{2}}{2nmc} \sum_{i=a,d} \left[\frac{N_{i}f_{i}}{\omega_{0i}} \left\{ \frac{(\omega_{0i} + \Delta_{i})^{2} - \omega^{2} - \Gamma_{i}^{2}}{\left[(\omega_{0i} + \Delta_{i})^{2} - \omega^{2} + \Gamma_{i}^{2}\right]^{2} + 4\omega^{2}\Gamma_{i}^{2}} - \frac{(\omega_{0i} - \Delta_{i})^{2} - \omega^{2} - \Gamma_{i}^{2}}{\left[(\omega_{0i} - \Delta_{i})^{2} - \omega^{2} + \Gamma_{i}^{2}\right]^{2} + 4\omega^{2}\Gamma_{i}^{2}} \right\} \right]$ (8)

で表されることを利用して求めた回転角である¹⁶⁾. e は電子の電荷, m は電子の質量, N は活性イオン密度, $\omega_{0i\pm}$ (= $\omega_0 \pm \Delta$) は右円偏光と左円偏光の共鳴エネルギー, ω_0 は共鳴電子遷移エネルギー, $f_{\pm i}$ は右円偏光と左円偏光の振動子強度, Γ_i は遷移の半値幅である.また, i(=a,d)は, a は八面体サイトおよびd は四面体サイトを表す.ただし, x = 0

の時のファラデー回転角-1.4 度として, Ga 置換量依存性を 計算した.また,導入した Ga³⁺の 90%が 4 面体サイトの Fe³⁺ を置換する¹⁶⁾とした. Ga 置換量 0~1 の時と, Ga 置換量 1.1~2 の時とでスペクトルの正負が反転していることがわ かる. この結果は,四面体サイトと八面体サイトの磁気モ ーメントの優位が反転したことを示すものである. したが って, Ga 置換量 1~1.1 の間に正味の磁化が消失する磁化 補償組成が存在すると考えられる.また,得られたファラ デー回転角の Ga 置換量依存性については,実験データに ばらつきがあるものの予想と傾向が合っていることがわか る.

Fig. 6 FMR spectra of (a)x=0, (b)x=0.5, (c)x=0.9, (d)x=1, (e)x=1.1, (f)x=1.2, (g)x=1.3, (h)x=1.4, (i)x=1.5, and (j)x=2 of EuBi₂Fe_{5-x}Ga_xO₁₂ thin films prepared on GGG (100) substrates.

4.3 FMR 測定結果

作製した試料の FMR の測定結果を Fig. 6 に, H_{res} の値 を β に対してプロットしたものを Fig. 7 に示す. H_{res} の実 験値は FMR スペクトルを積分して得られたマイクロ波の 吸収の値が最大となる磁場の値とした. Ga 置換量 0~1.5 の時は, H_{res} は β =90°で対称であったため, β =100-180° のスペクトルは省略した. また,各スペクトルに重畳した GGG 基板由来の信号を差し引いた. GGG 基板の電子スピ ン共鳴の吸収は Gd³⁺などに起因する常磁性共鳴によるも のであると考えられる⁵.

Fig. 7 The angle of magnetic field application δ dependence of resonance magnetic field H_{res} of (a)x=0, (b)x=0.5, (c)x=0.9, (d)x=1, (e)x=1.1, (f)x=1.3, (g)x=1.4, and (h)x=1.5 of EuBi₂Fe_{5-x}Ga_xO₁₂thin films prepared on GGG (100) substrates.

Table 1 K_1 , K_u , K_{eff} and γ of $EuBi_2Fe_{5-x}Ga_xO_{12}$ thinfilms deduced from FMR analysis.

Ga content	K_1 (×10 ³ erg/cm ³)	$K_{\rm u}$ (×10 ³ erg/cm ³)	K _{eff} (×10 ³ erg/cm ³)	γ (MHz/Oe)
0	-25.9	20.6	-96.1	2.51
0.5	-14.8	-12.2	-55.7	2.46
0.9	-8.49	-17.7	-29.6	2.60
1	-0.0941	-2.18	-3.23	4.72
1.1	-0.00717	-0.350	-0.368	4.19
1.2	_	—	—	_
1.3	0.695	-0.958	-2.95	3.74
1.4	1.36	1.20	-3.76	3.67
1.5	-2.15	-3.61	-17.2	4.95
2	_	_	—	_

 K_{eff} and gyromagnetic ratio γ of EuBi₂Fe_{5-x}Ga_xO₁₂ thin films.

Ga 置換量 1.2,2 の時は,FMR スペクトルのピークが他 のものと比べ非常に小さく H_{res} の確認が出来なかった.Ga 置換量 0~1.5 の時は, H_{res} が β = 90°で最小値となり, β = 0°,180°で最大値となっていることから,面内方向に磁化容 易軸を持つことがわかる.また, β = 0°の H_{res} が Ga 置換 量 0.9 で約 6 kOe だったのに対し,Ga 置換量 1 で約 2.5 kOe と約 0.4 倍に減少した.共鳴磁場が減少したことによ って,磁気回転比 γ の値が大きくなると予想される.

5.4 FMR 測定解析結果

今回は, 飽和磁化として文献値を用いて算出し解析した. 条件としては, 格子定数を 1.260 nm, 温度を 295 K, Bi³⁺ の磁気モーメントは 0, Ga³⁺は Fe³⁺の四面体サイトに 90% 置換する ¹⁶こととした. Y₃Fe₅O₁₂ の磁気モーメント ¹⁷)か ら室温の Fe³⁺の磁気モーメントを, Eu₃Fe₅O₁₂ の磁気モー メント ¹⁸)から室温の Eu³⁺の磁気モーメントを算出した.こ れらを用いて飽和磁化を算出した結果は, Ga 置換量 0, 0.5, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 2 でそれぞれ 120.8, 66.5, 23.1, 12.2, 1.3, 9.5, 20.4, 31.3, 42.1, 96.4 emu/cm³ であった.

式(7)を用いたフィッティングにより求めた異方性定数 K_1 , K_u , K_{eff} および磁気回転比 γ を Table 1 に示す.また, K_{eff} ϵ_γ の Ga 置換量依存性を Fig. 8 に示す.およびは, Ga 置換量を増加することによって減少する傾向が見られ た.しかし, K_u については,負の値を示した.このことは, 正の磁歪定数をもつ希土類 (Y, Nd)を用いたビスマス置換 磁性ガーネットと反対の結果であり,この材料が負の磁歪 定数を持つことを示している.最終的に K_{eff} が負の値を持 ったことから, Eu を用いることで,Ga 置換量を 1.5 まで 増加させても負の値となり,磁気光学イメージング材料と して必要な面内磁気異方性を示した.さらに, γ はGa 置換 量を 0.9 から1に増加させたところで,約 4.7 MHz/Oe と 他のものと比べて約 1.9 倍に増加した.このことから,Ga 置換量 0.9~1 で角運動量補償組成があると考えられる.

6. 結論

MOD 法を用いて GGG(100) 基板上に(100)配向した EuBi₂Fe_{5-x}Ga_xO₁₂ (x=0, 0.5, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 2) 薄膜を作製した.磁気光学測定の結果,全ての薄膜におい て、520 nm 付近にピークを有する典型的な高濃度 Bi 置換 希土類鉄ガーネットのファラデー回転スペクトルが得られ た.また、ファラデースペクトルの正負が逆転したことか ら、Ga 置換量 1~1.1 の間に正味の磁化が消失する磁化補 償組成が存在すると考えられる.FMR 測定の解析結果か ら、Ga 置換量 0.9~1 で角運動量補償組成が存在すると考 えられる.また、Ga 置換量を 0.9 から 1 に増やしたところ で、 γ が約 4.7 MHz/Oe と他のものと比べて約 1.9 倍に増 加した.

今回, Bi 置換量が 2.0 と高い Bi 置換磁性ガーネット薄 膜において,室温で磁化補償組成および角運動量補償組成 が得られることを初めて示すことができた.さらに,角運 動量補償組成付近でγの増大が観察され, Bi 置換磁性ガー ネットの高周波特性向上の可能性が示された.

謝辞 本研究の一部は、JSPS 二国間交流事業(JPJSBP-120208805),名古屋大学未来材料・システム研究所共同 研究の支援を受けて実施された.

References

 L. E. Helseth, R. W. Hansen, E. I. Il'yashenko, M. Baziljevich, and T. H. Johansen: *Phys. Rev. B*, **64**, 174406 (2001).

- S. Wittekoek, T. J. A. Poprna, J. M. Robertson, and P. F. Bongers: *Phys. Rev. B*, **12**, 2777 (1975).
- M. Gomi, K. Satoh, and M. Abe: J. Appl. Phys., 63, 3642 (1988).
- R. Urakawa, W. Asano, M. Nishikawa, M. Kawahara, T. Nishi, D. Oshima, T. Kato, and T. Ishibashi: *AIP. Adv.*, 12, 095322 (2022).
- K. Ohta: Jikikogaku no Kiso 2 (in Japanese), p. 341 (Kyoritsu Shuppan, Tokyo, 2017).
- R. C. LeCraw, J. P. Remeika, and H. Matthews: J. Appl. Phys., 36, 901 (1965).
- H. Makino, and H. Yasuharu: Mat. Res. Bull., 16, 957 (1981).
- 8) P. Hansen, and J. P. Krumme: *Thin Solid Films*, **114**, 69 (1984).
- V. J. Fratello, S. J. Licht, C. D. Brabdle, H. M. O'Bryan, and F. A. Baiocchi: J. Cryst. Growth, 142, 93 (1994).
- S. Wang, H. Onoda, J. Harbovsky, H. Yanagihara, J. Inoue, M. Veis, and T. Ishibashi: J. Magn. Soc. Jpn., 47, 137 (2023).
- H. Sakaguchi, S, Isogami, M. Niimi, and T. Ishibashi: J. Phys. D: Appl. Phys., 56, 365002 (2023).
- 12) N. Adachi, V. P. Denysenkov, S. I. Khartsev, A. M. Grishin, and T. Okuda: *J. Appl. Phys.*, 88, 2734 (2000).
- 13) N. Bloembergen: Proc. IRE, 44, 1259 (1956).
- 14) R. D. Shannon: Acta Crystallogr., A32, 751 (1976).
- 15) T. Ishibashi: J. Magn. Soc. Jpn., 44, 108 (2020).
- 16) L. E. Helseth, R. W. Hansen, E. I. Il'yashenko, M. Baziljevich, and T. H. Johansen: *Phys. Rev. B*, **64**, 174406 (2001).
- 17) P. Hansen, and J. P. Krumme: J. Appl. Phys., 45, 2728 (1974)
- 18) L. G. Van Uitert, E. M. Gyorgy, W. A. Bonner, W. H. Grodkiewicz, E. J. Heilner, and G. J. Zydzik: *Res. Bull.*, 6, 1185 (1971).

2023年12月20日受理, 2024年4月26日採録