磁束変調型磁気ギヤの損失のトルク・速度依存性に関する実験的検証

朝雛えみり、中村健二

(東北大学)

Experimental Verification of Loss Dependence on Torque and Speed in Flux-modulated-type Magnetic Gear

E. Asahina, K. Nakamura

(Tohoku University)

はじめに

近年,出力密度向上を目的に超高速モータの開発 が盛んに行われているが,これを減速する機械式ギ ヤには本質的に摩耗や発熱の問題がある。そのため, 非接触で増減速可能な磁気ギヤに注目が集まってい る。このような背景から,先に筆者らは,80,000 rpm で動作可能な磁束変調型磁気ギヤの解析設計・試作 試験を行った¹⁾。

本稿では、本磁気ギヤの損失のトルクおよび速度 依存性について、3次元有限要素法(3D-FEM)と実 機試験によって検討を行ったので報告する。

超高速磁気ギヤの損失特性

Fig.1に、今回使用する磁束変調型磁気ギヤの諸元 を示す。本磁気ギヤのギヤ比は 6.667 であり、入力軸 は内側回転子、出力軸はポールピースである。また、 入力側の最高回転数は 80.000 rpm である。

Fig.2に, 3D-FEM で算出したトルク対損失特性を示す。同図から、本磁気ギヤの損失は速度のみに依存し、トルクには依存しないことがわかる。

Fig.3に,試作した超高速磁気ギヤの外観を示す。 ポールピースホルダやケースなどは,漏れ磁束など による渦電流の発生を防ぐため,すべて CFRP(炭素 繊維強化プラスチック)で製作した。

Fig. 4(a) に実験システムを示す。磁気ギヤ(MG)の入力側にはスイッチトリラクタンスモータ(SRM)を接続し、出力側にはトルクメータを接続した。実験では、SRMを5000rpm、10,000rpmで回転させ、トルクを0.1 N·mから0.4 N·mまで変化させた。同図(b)に磁気ギヤの損失の実測値を示す。ここで損失の実測値は、本システムで測定した全損失から、SRM単体で運転したときの損失を引くことで算出した。この図を見ると、5000rpm、10,000rpm両回転数において損失は、計算結果と同様、トルクにはほとんど依存しないことがわかる。なお、本研究の一部はJSPS科研費JP23KJ0189および東北大学AIE 卓越大学院プログラムにより支援された。

Fig. 1 Specifications of a prototype ultra-high-speed fluxmodulated-type magnetic gear.

(a) Iron loss (b) Eddy current loss in magnets Fig. 2 Calculated loss characteristics of the prototype magnetic gear.

(a) Inner rotor (b) Pole-pieces (c) Magnetic gear Fig. 3 Appearance of the prototype magnetic gear.

(a) Experimental system (b) Measured loss characteristics. Fig. 4 Experimental system and measured loss characteristics of the prototype magnetic gear.

参考文献

1) E. Asahina, K. Mitsuya, K. Nakamura, Y. Tachiya, Y. Suzuki, K. Kuritani, J. Magn. Soc Jpn. Special Issues, 7, 85 (2023).

高速 SR モータの瞬時トルク制御に関する基礎検討

岡田 篤弥, 中村 健二 (東北大学)

Basic Examination of Instantaneous Torque Control for High-speed SR Motor

A. Okada, K. Nakamura

(Tohoku University)

はじめに

スイッチトリラクタンス(SR)モータは、構造が 単純で堅牢、安価で熱に強いという特長を有する。 一方、両突極構造に由来してトルクリプルが大きく、 振動・騒音が大きいという課題がある。

上述の課題に対して先行研究では、瞬時相トルク 分配制御(IPTDC)が提案され¹⁾,小型電気自動車 用インホイール・ダイレクトドライブ SR モータの トルクリプルや振動・騒音を低減可能であることが 実証された。ただし、本モータの回転数はおおよそ 1,000 rpm 以下であり、回転数 10,000 rpm を超える SR モータに適用された事例はない。

そこで本稿では,先に電動工具用に開発された最 高回転数 20,000 rpm の高速 SR モータ²⁾ に対して, IPTDC の適用を試みたので報告する。

IPTDC のシミュレーション結果

Fig. 1に,制御対象としたSRモータの諸元を示す。 本モータの動作回転数は約 10,000~20,000 rpm, 定 格トルクは 0.1 N·m である。

Fig. 2 に,先行研究で提案された IPTDC の概念図 を示す。IPTDC は,励磁相切り替え時に生じるトル クの谷を無くすため,切り替え前後の 2 つの相の合 計トルクを指令値に追従させることで,リプルを低 減する制御法である。本稿では,MATLAB/Simulink を用いて,IPTDC を Fig. 1 の高速 SR モータに適用 した場合のシミュレーションを行った。

Fig. 3 にトルクの計算波形を示す。通常励磁と IPTDC ともに回転数は 15,000 rpm, 平均トルクは 0. 02 N·m である。この図を見ると, IPTDC により励磁 相切り替え時のトルクの落ち込みが抑制され, リプ ルが低減されていることがわかる。今後は実機によ る検証を行う予定である。

<u>参考文献</u>

- H. Goto, A. Nishimiya, H. J. Guo, A. Honda, and O. Ichinokura, *COMPEL*, 29, 173 (2010).
- K. Nakamura, Y. Kumasaka, and O. Ichinokura, *Journal of Physics: Conference Series*, 903, 012040 (2017).

Fig. 1. Specifications of high-speed SR motor ²⁾.

Fig. 3. Calculated torque waveforms of high-speed SR motor.

分布巻埋込磁石モータのリラクタンストルク向上のための フラックスバリア形状に関する検討

田村一樹,中村健二,*成瀬賢哉,*萱野雅浩 (東北大学,*愛知製鋼)

Flux Barrier Shape for Reluctance Torque Improvement of Distributed-Winding Interior Permanent Magnet Motor

Kazuki Tamura, Kenji Nakamura, *Kenya Naruse, *Masahiro Kayano (Tohoku University, *Aichi Steel)

はじめに

埋込磁石(IPM)モータは、小型高出力・高効率で あることから、様々な分野で利用が広がっている。 一方、フラックスバリアは内部に収めるネオジム焼 結磁石の形状に合わせる必要があるため、リラクタ ンストルク最大という観点でバリア形状を最適化す ることは容易ではない。そこで本稿では、分布巻 IPM モータを考察対象とし、形状自由度の高いネオジム ボンド磁石の利用を前提に、リラクタンストルクを 向上可能なフラックスバリア形状について、種々検 討を行ったので報告する。

最適な回転子フラックスバリアの探索結果

Fig. 1 に、考察に使用した分布巻 IPM モータの諸 元を示す。Fig. 2 に、最適化を行ったフラックスバリ ア形状の一例を示す。同図に示した平板 1 層形と円 弧 2 層形の他に、V 字 1 層形、円弧 1 層形、円弧 3 層形の 5 種類の異なるフラックスバリアを有する回 転子について、最適寸法の探索を行った。加えて、 Fig. 3 に示すように、磁束線の特徴を捉え、楕円弧状 のフラックスバリアについても、最適寸法の探索を 行った。なお、解析には 2 次元有限要素法 (2D-FEM) を用い、さらにリラクタンストルクのみに着目する ため、磁石は取り除き、代わりに磁気ブリッジを省 くことで、磁石磁束による磁気ブリッジの磁気飽和 を考慮した。

Fig. 4 に,最適化後の楕円弧形 2 層のフラックスバ リア形状を示す。また,Table. 1 には各フラックスバ リアにおけるリラクタンストルクの最大値と,その 時の d 軸インダクタンス L_d , q 軸インダクタンス L_q , 突極比を示す。この表を見ると,楕円弧 2 層形が最 もリラクタンストルクが大きいことがわかる。すな わち,リラクタンストルク向上には磁束線の特徴を 捉えたフラックスバリア形状が最適であることが明 らかとなった。

Fig. 2. Flux barrier shapes for comparison, (a) Flat-shape, 1 layer, (b) Arc-shape, 2 layers.

		Parameter (mm)	Variable name	Search range	
	`			Min	Max
		Depth of flux barrier	d_1	0.1	12.15
	1	Inner radius of the second layer	<i>d</i> ₂	6	18.2
		Outer radius of the first layer	d_3	12.15	24.2
)		Inner radius of the first layer	d_4	12.15	24.2

Fig. 3. Parameters to be optimized in elliptical arc shape, 2 layers.

Parameter (mm)	Variable name	Optimum value (mm)
Depth of flux barrier	d_1	3.4
Inner radius of the second layer	d_2	14.1
Outer radius of the first layer	d ₃	18.0
Inner radius of the	d_4	21.7

Fig. 4. Optimized barrier shape in elliptical arc shape, 2 layers.

Table 1 Maximum value of reluctance torque, q-axis & d-axis inductance, and saliency ratio of each flux barrier shape.

Model	Maximum reluctance torque (N • m)	d-axis inductance (mH)	q-axis inductance (mH)	Saliency ratio
Flat-shape, 1 layer	18.96	0.48	1.31	2.75
Arc-shape, 2 layers	19.52	0.39	1.20	3.05
Elliptical arc shape, 2 layers	24.10	0.38	1.47	3.86

ネオジム磁石とフェライト磁石を有する

集中巻埋込磁石モータの磁石配置に関する検討

尾花輝哉, 中村健二

(東北大学)

Magnet Arrangement of Concentrated-Winding Interior Permanent Magnet Motor

with Nd-Fe-B and Ferrite Magnets

T. Obana, K. Nakamura

(Tohoku University)

はじめに

埋込磁石 (IPM) モータは, 永久磁石を回転子鉄心 内部に埋め込んだモータの総称である. IPM モータ は, マグネットトルクに加えてリラクタンストルク も利用できるため, 高出力・高効率なモータとして, 様々な用途に応用範囲を拡大し, 適用機器の省エネ ルギー化に大きく貢献している. この IPM モータに おいて, レアアースの使用量削減や小型化が期待さ れている.

本稿では、IPM モータにおいてレアアース量を増 やすことなくトルクを向上させることを目的として、 フェライト磁石を併用した集中巻 IPM モータの磁 石配置について、2 次元有限要素法(2D-FEM)を用 いて検討したので報告する.

フェライト磁石併用 IPM モータの磁石配置

Fig. 1 に、本稿で基準とした集中巻 IPM モータを 示す.3 相8 極 12 スロットの集中巻モータであり、 家電・民生品等で一般的に用いられているものであ る.本稿では、この IPM モータの固定子構成は変え ずに、Fig. 2(a)~(f)に示すような6種類の異なる磁石 配置を有する回転子について、トルク特性を算定し た.解析条件は、回転数 9000 rpm、電流実効値 15 A とした.なお、2D-FEM には、㈱JSOL 製の電磁界解 析プログラムである JMAG Designer 21.0 を用いた.

Table 1 に,各磁石配置におけるトルクの最大値を 示す.同表より,Fig. 2(a)および(b)の磁石配置のトル クが大きく,基準モータから約 0.3 N·m 向上した.

次いで, Fig. 3 に磁石配置(a)および(b)について減 磁解析を行った結果を示す.解析条件は定格電流の 3 倍である 45 A とした.同図より,磁石配置(a)は1, 2 層目ともに中央のフェライト磁石が大きく減磁し ていることがわかる.一方,磁石配置(b)では2 層目 両端のネオジム磁石の端部がわずかに減磁している

Fig. 1 Specifications of a reference IPM motor.

のみである.したがって、トルク向上と減磁耐力の 観点から見て、磁石配置(b)が最適な磁石配置である といえる.今後は、速度-トルク特性や効率などに ついても比較・検討を行う予定である.

Fig. 2 Magnet arrangement for comparison.

Table. 1 Comprison of the maximum torque of each magnet arrangement.

Model	Maximum torque (N•m)	Model	Maximum torque (N•m)
Reference motor	3.56	(d)	2.66
(a)	3.91	(e)	3.01
(b)	3.84	(f)	3.66
(c)	3.21		

Fig. 3 Comparison of contour diagrams of the irreversible demagnetization ratio.

小型 EV 用インホイール・アキシャルギャップ型 SR モータの 駆動領域拡大に関する検討

西海悠介,中澤貫太,中村健二(東北大学) Drive Range Expansion of In-Wheel Axial-Flux SR Motor for Compact EV Y. Nishigai, K. Nakazawa, K. Nakamura (Tohoku University)

はじめに

先に筆者らは、アキシャルギャップ型のスイッチ トリラクタンス(SR)モータの試作評価と、インホ イール駆動方式の小型電気自動車(EV)への適用を 行い、実証走行に成功した¹⁾。一方で、従来のモー タ制御手法である瞬時相トルク分配制御(IPTDC) では、高速回転時に出力トルクが低下し、車両とし ての運転領域が狭いことが明らかになった。

そこで本稿では IPTDC を改良し, 従来固定されて いた通電区間を回転速度やトルクに応じて柔軟に変 化させる通電区間可変制御²⁾に加え, さらなる高速・ 高負荷域まで駆動領域を拡大することを目指し, 平 均トルクに着目した制御法について検討を行った。

各種トルク制御手法の比較

Fig.1に、考察に用いたアキシャルギャップ型 SR モータを示す。本 SR モータを制御対象として、従 来の IPTDC, IPTDC の通電区間を柔軟に変化させる 通電区間可変制御、そして瞬時トルクでは無く、平 均トルクを指令値に追従させる平均トルク制御を適 用した場合の速度-トルク特性、並びにトルク波形 を算定して比較を行った。なお、シミュレーション には MATLAB/Simulink を用いた。

Fig. 2 に, IPTDC と通電区間可変制御のトルク波 形を示す。この時の回転数とトルクは 400 rpm, 60 N·m である。IPTDC では励磁切り替え時にトルクの 谷が生じて指令値に追従できていないが,通電区間 可変制御では追従できていることがわかる。

Fig. 3 は、通電区間可変制御と平均トルク制御の トルク波形の比較である。この時の回転数とトルク は 800 rpm、40 N·m である。この図を見ると、平均 トルク制御では、より高速領域まで指令値どおりの 平均トルクを発生できていることがわかる。

Fig.4に,速度-トルク特性の比較を示す。同図(a) が従来の IPTDC の結果であり,同図(b)が平均トル ク制御と通電区間可変制御を組み合わせた場合の結 果である。これらの図より,提案制御により駆動領 域が大幅に拡大したことがわかる。

Fig. 1 Specifications of Axial-Flux-type SR motor.

(a) Variable commutation period control
(b) Average troque control
Fig. 3 Comparison of torque waveforms at 800 rpm, 40 N⋅m.

Fig. 4 Comparison of calculated speed-torque characteristics of IPTDC and the proposed method.

参考文献

- 高瀬圭祐,後藤博樹,一ノ倉理,電気学会 マグネティックス 研究会資料, MAG-17-2 (2017)
- 2) 中澤寛太・中村健二, 電気学会回転機研究会資料, RM-22-114 (2022)

磁束変調型磁気ギヤの空隙磁束密度波形の分析

岡崎晃洋,角貴則,中村健二,*進士智一,*武田啓司 (東北大学,*TDK 株式会社)

Examination of Air Gap Flux Density Waveforms of Flux-Modulated-type Magnetic Gear

A. Okazaki, T. Sumi, K. Nakamura, *T. Shinji, and *K. Takeda

(Tohoku University, *TDK Corporation)

はじめに

磁気ギヤは非接触で増減速可能であるため,機械 式ギヤと比較して,振動や騒音が小さく,保守性に 優れる。その中でも磁束変調型磁気ギヤは、トルク 密度と効率が高く,実用化が最も期待されている¹⁾。 磁束変調型磁気ギヤの最大トルクやトルクリプルな どは、内外2つの空隙内の磁束分布に強く依存する ことから,空隙磁束密度波形を正確に把握すること は極めて重要である。

そこで本稿では、内外2つの空隙磁束密度波形を 同時に観測可能な測定系を構築し、測定された空隙 磁束密度波形とその周波数成分について、有限要素 法(FEM)の結果と比較検証したので報告する。

空隙磁束密度波形の測定結果

Fig, 1 に,磁束変調型磁気ギヤの諸元を示す。内 側回転子の極対数が4,外側回転子の極対数が22 で あることから,ギヤ比は5.5 である。

Fig. 2 に、磁気ギヤの空隙磁束密度波形の測定系 の外観を示す。試作ギヤは、様々な構成での空隙磁 束密度波形の測定を行うため、内外回転子とポール ピースが自由に着脱可能な構造となっている。また、 基板を介して円盤に取り付けられたホールセンサを 試作ギヤ内外の空隙に挿入し、円盤ごとホールセン サを回転させることで、2 つの空隙の任意の位置角 の磁束密度を同時に測定することができる。

Fig. 3(a) に、内側回転子磁石の磁束がポールピー スによって変調された後の外側空隙磁束密度波形の 測定結果を示す。併せて、同条件の 2D-FEM および 3D-FEM の算定結果を示す。同図より、内側回転子 の極対数に由来する4次成分をベースにして、そこ に高調波成分が重畳していることがわかる。同図(b) は、各々の波形を高速フーリエ変換(FFT)した結 果である。この図を見ると、外側回転子に同期し、 トルク伝達に寄与する22次成分の振幅が、基本波で ある4次成分の次に大きいことがわかる。

Outer rotor Gear ratio 5.5 (Low speed rotor) Outer diamete 106 mm Axial length 15 mm 2 mm (Inner side) Air gap 1 mm (Outer side Outer rotor pole-pairs 22 Rotor core material 35A250 Inner rotor Pole-piece material (High speed rotor) Sintered Nd-Fe-B Magnet material

Fig. 1. Specifications of flux-modulated-type magnetic gear.

Fig. 2 Measurement system for air gap flux density waveforms.

(a) Air gap flux density waveforms

(b) Frequency components

参考文献

K. Atallah and D. Howe, 37, 2844 (2001).

Fig. 3 Air gap flux density waveforms and their frequency components.